
VIB Department of Medical Protein Research, UGent

Department of Biochemistry

Peptizer

a tool for assessing false positive peptide

identifications and manually validating selected

results

Instruction Manual

by

Kenny Helsens

Co-authors: Prof. Dr. K. Gevaert, Prof. Dr. J. Vandekerckhove, Dr. L. Martens

2008

CONTENTS i

Contents

Table of contents i

Abbreviations iii

1 Introduction 1

2 Installing Peptizer 2

2.1 Downloading Java . 2

2.2 Downloading the Peptizer files . 3

3 Using Peptizer 4

3.1 Starting a Peptizer task . 4

3.1.1 Selection task . 5

3.1.2 ARFF task . 9

3.2 Handling a Peptizer task . 11

3.2.1 Overview . 11

3.2.2 Identification tree . 14

3.2.3 MS/MS spectrum identification tab 16

3.2.4 Status pane . 23

3.3 Saving the results . 23

3.4 Distributing Peptizer objects . 27

3.5 Understanding the configuration files . 28

3.6 Using Peptizer from the command line . 31

4 Extending Peptizer 34

4.1 Introduction . 34

4.2 Overview . 35

4.3 Writing the first Agent . 36

4.4 A more advanced Agent . 38

4.4.1 Background . 38

4.4.2 Creating a custom Agent to inspect expectations 38

CONTENTS ii

4.5 Using a custom Agent in Peptizer . 49

4.6 Writing your own AgentAggregator . 52

iii

Abbreviations

ARFF Attribute Relation File Format

CSV Comma Separated Values

MIS Mascot Ion Score

MIT Mascot Identity Threshold

MS/MS Tandem Mass Spectrometry

1

Chapter 1

Introduction

Large datasets generated by MS/MS-driven proteomics are most commonly analyzed

by algorithms such as MASCOT, X!Tandem and SEQUEST. These perform a compre-

hensive sequence database search and thereby suggesting multiple peptide hypothesises for

each MS/MS spectrum. Typically, the highest scoring peptide hypothesis with an e-value

lower then 0.05 is accepted. However, the difficulty is to verify whether that suggested

peptide hypothesis is correct. By post-processing database search results, an extra

layer of validation can be added to these peptide hypothesises. Peptizer was developed

as a configurable post-processing platform that can be applied to separate suspicious

peptide hypothesises from valid ones, and subjecting the former to manual validation.

Instead of verifying peptide hypothesises using fixed assumptions, Peptizer makes use of

so-called pluggable assumptions. These are called Agents and can vote on a specific

property of a peptide hypothesis. By combining a group of Agents, their votes are aggre-

gated and all together form a profile that separates peptide hypothesises in .

Peptizer presents the selected peptide identifications in an extensive manual validation

environment. Therein, general and specific information, together with spectrum-derived

information place a critical scientist in an information-rich and therefore optimal position

to validate database search results.

2

Chapter 2

Installing Peptizer

Installing Peptizer is a two-step process: first, download and install Java version 1.5

or higher and second, download the Peptizer files from the project website at http:

//genesis.ugent.be/peptizer.

2.1 Downloading Java

As Peptizer is a Java application, Java must be installed properly. Check this by opening

the console

Windows - Windows Start// Run // cmd

Unix - Open the shell of the distribution

and type

java -version

Now something like

java version ”1.6.0 03”

should appear which indicates that Java version 1.6 is installed properly. If Java version

1.5 or later is not installed, then go to http://java.com/ and follow the instructions to

install the latest Java version.

http://genesis.ugent.be/peptizer
http://genesis.ugent.be/peptizer
http://java.com/

2.2. DOWNLOADING THE PEPTIZER FILES 3

2.2 Downloading the Peptizer files

There are three types of Peptizer files:

1. Java libraries

2. Configuration files

3. Start-up script

You can install these files properly by the Java installer you find at the project website

(http://genesis.ugent.be/peptizer/download/installer.html).

Start Peptizer through double clicking the start-up script.

http://genesis.ugent.be/peptizer/download/installer.html

4

Chapter 3

Using Peptizer

This chapter explains the basics of using Peptizer. We will here explain how to start a

new Peptizer task and how to handle or save results from such a task. Furthermore,

we will indicate how to distribute Peptizer data and how to manage the configuration

files.

Once Peptizer has been set up as described in chapter 2, start Peptizer by the peptizer.bat

(or peptizer.sh in a UNIX environment) script. Upon launching the script, a window will

appear from which Peptizer can be started (3.1).

3.1 Starting a Peptizer task

Start a new task from the menu bar at the top (figure 3.1).

Two types of tasks can be distinguished. The first and most important is the selection

task. Here, the peptide hypothesises that were selected by the profile, are handled in

the manual validation interface of Peptizer. A second task is the ARFF task. Here,

the peptide hypothesises are handled into an ARFF file. This file contains all peptide

hypothesises labelled whether they did or didn’t match the profile along a feature vector

with the Agent inspection results or votes.

3.1. STARTING A PEPTIZER TASK 5

Figure 3.1: The start-up view of Peptizer. The top panel displays the menu bar wherein a new
Peptizer Tasks can be started. The bottom panel displays a status panel with a
welcoming message. The status panel will be updated upon user actions.

3.1.1 Selection task

Overview

Start a new selection task by pressing Ctrl-T or by clicking in the menu bar at the top:

Main // New Task // Selection Task

A new dialog appears wherein a new task can be created(3.2).

Therein, the important parts of the dialog are labelled by characters. Just below the figure,

a short explanation is shown.

3.1. STARTING A PEPTIZER TASK 6

A

B

C

D

E

F

Figure 3.2: Overview of the new selection task dialog. The data source is defined in A. The
Agents are activated and customized in B. The AgentAggregator is selected and
customized in C. The Mascot confidence level for peptide hypothesises is defined in
D. Agent configuration files can be cleared, stored or loaded in E and, finally, a new
task can be started in F.

A. Defining the data source.

Which MS/MS spectrum identifications must be processed?

B. Activating and customizing Agents.

What rules do the peptide identifications have to fit?

C. Selecting and customizing the AgentAggregator.

How should the Agent votes be aggregated to judge a peptide hypothesis?

D. Defining the Mascot probability.

When is a peptide hypothesis considered confident?

3.1. STARTING A PEPTIZER TASK 7

E. Storing, clearing or loading a Peptizer configuration.

What pre-defined configuration must be used?

F. Start the selection task!

Each of these parts are explained into more detail below.

Defining the data source

The data source relates to the peptide hypothesises that must be inspected. Peptizer

currently only inspects peptide hypothesises from Mascot result files. These files are stored

at the Mascot server and contain the core results of the interpreted MS/MS data. Different

data sources can be defined in Peptizer from the pull-down menu.

Mascot dat Files Folder Select a folder using the browse button. Peptizer will then

process all the peptide hypothesises in all Mascot result files in that selected folder

(other files in that folder will be ignored).

Mascot dat File Select a Mascot result file by the browse button. Peptizer will then

process all the peptide hypothesises in the selected Mascot result file.

ms lims project Create a ms lims database connection using the create connection but-

ton.1 Once a connection is established, select a ms lims project from the pull-down

menu. Peptizer will then process all the peptide hypothesises in the ms lims project.

ms lims identification id After a connection to a ms lims database has been estab-

lished, enter one ms lims identification id per line in the textarea. Peptizer will then

process only the MS/MS spectra and their peptide hypothesis of the given identifi-

cation ids.

The Mascot result files can be parsed in two different ways. Select the appropriate radio

button:

Memory uses in-memory parsing. This is fastest though very memory intensive.

Use this option for files up to tens of megabytes.

1ms lims stands for Mass Spectrometry oriented LIMS system (more information can be found at
http://genesis.ugent.be/ms_lims/), which organizes raw MS/MS data and their interpretation by
Mascot in a project-wise fashion.

http://genesis.ugent.be/ms_lims/

3.1. STARTING A PEPTIZER TASK 8

Index uses index-based parsing. This is slower however far less greedy on virtual memory.

Use this option for files above 100MB.

Activating and customizing the Agents

Each Agent inspects a property of a peptide hypothesis and casts a vote on each element

coming from the data source. This vote has either an approving, reserving of rejecting

opinion for the final grouping of peptide hypothesises. This table serves to select one

or more Agents altogether having the properties of the peptide hypothesises that will be

merged.

Each table row represents an Agent and each table column relates to another function in

Peptizer:

Name Very short identifier of an Agent serving as a row header.

Active Simple conditional whether this Agent should be used or not. Check this checkbox

if an Agents inspection must be enabled.

Veto Extra rights for an Agent vote. If checked, a peptide hypothesis will always be

selected when this Agent approves selection.

Parameters Optional settings for an Agent. Some Agents require an additional param-

eter, this is mostly a user-defined threshold used by the Agent during inspection.

If the parameter says ’NA’, no parameters are to be set. Else, the table shows the

current settings. These can be modified by double-clicking the parameters.

Hint

A short tooltip describing an Agents logic can be shown by holding the mouse cursor on

its name cell.

Selecting and customizing the AgentAggregator

The AgentAggregator aggregates the votes from the different Agents. As there are different

logical paths for aggregation, there are different AgentAggregators. Select an appropriate

AgentAggregator by clicking the pull-down menu on the left. By clicking the info button

a dialog will pop up describing the selected AgentAggregator. This dialog informs on the

3.1. STARTING A PEPTIZER TASK 9

general concept, the logic of the aggregation and the optional settings. An example dialog

for the BestHitAgentAggregator is shown in figure 3.3.2 Modify these optional settings by

double-clicking the value cells.

Defining the Mascot confidence

The Mascot Identity Threshold (MIT) is calculated for a given alpha value. This alpha

value reflects the probability that a peptide hypothesis is random.

Insert an appropriate alpha value for MIT calculation in the textfield at the bottom. Only

peptide hypothesises with a Mascot Ion Score (MIS) higher then the MIT will be considered

by Peptizer. Note that secondary and tertiary ranked peptide hypothesises with a MIS >

MIT will be considered by Peptizer.

Storing, clearing or loading a Peptizer configuration

Once a set of Agents is selected and customized, that configuration can be saved into an

Agent configuration file. These files can be re-loaded at a future time or at another place.

Save or load an Agent configuration file by clicking the Save Agents button (Alt-S) or the

Load Agents button (Alt-L). By clicking the clear button (Alt-C), the table will be reset

for a clean start.

Find out more on the configuration files in section 3.5.

3.1.2 ARFF task

”An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes

a list of instances sharing a set of attributes. ARFF files were developed by the

Machine Learning Project at the Department of Computer Science of The University

of Waikato for use with the Weka machine learning software.”

Quotation from http://www.cs.waikato.ac.nz/~ml/weka/arff.html.

The Arff task is similar to the Selection Task as Agents and AgentAggregators are similarly

selected and customized. The difference lies in the output presentation to the user. Instead

of presenting the selected peptide hypothesises in the manual validation interface, a single

2As we cannot document custom built AgentAggregators in this manual, we opted for documentation by
the configuration files that can also be viewed in real-time. We therefore refer to Peptizer for documentation
on the different types of AgentAggregators.

http://www.cs.waikato.ac.nz/~ml/weka/arff.html

3.1. STARTING A PEPTIZER TASK 10

Figure 3.3: The AgentAggregator information dialog. By clicking the info button, a description
dialog informs on the general concept, the logic of the aggregation and the optional
settings of the selected AgentAggregator.

ARFF file is produced containing all the peptide hypothesises. For each peptide hypothesis,

Peptizer creates a feature vector and a single label. One feature relates to one Agent

inspection and the label corresponds with the aggregation result.

Overview

Start a new Arff task by by pressing Ctrl-A or by clicking the menu bar in the top:

Main // New Task // Arff Task

In the Arff Task dialog two types of information can be chosen to fill the feature vector.

Choose by clicking on one of the following radio buttons:

Detailed result The feature is the peptide hypothesis variable used upon inspection.

e.g. ’6’ will be the feature value upon inspection of a 6 amino acid long peptide by

the Length Agent requiring a peptide hypothesis to be longer then 8 amino acids.

Match result The feature value is the Agent vote after inspection.

e.g. ’1’ will be the feature value upon inspection of a 6 amino acid long peptide by

the Length Agent requiring a peptide hypothesis to be longer then 8 amino acids.

3.2. HANDLING A PEPTIZER TASK 11

The main purpose of this task type is to show that different tasks can be created with the

common concept of Agents and AgentAggregators. Peptizer itself is focussed at the level

of a single peptide hypothesis. Therefore, we directed this task specifically towards more

advanced data-analysis at the level of groups of peptide hypothesises.

Besides the WEKA library, Arff files produced by Peptizer can be interpreted by free

initiatives such as Rapidminer3 or the R/Weka package for the R4 project of statistical

computing.

3.2 Handling a Peptizer task

As manual validation is a tricky and time-consuming job, this should be facilitated as

much as possible. First, the user only validates those peptide hypothesises selected by

set criteria. As such, no time is spend on peptide hypothesises that are not of interest.

Second, the user is placed in an optimal environment to make a final decision on the

validity of a peptide hypothesis. In such an environment, the user has a compact view with

general information and spectral information along with Agent-driven pluggable

information. These are core ideas of the Peptizer platform, both assisting the manual

validation process and improving the specificity of the results.

After a selection task is finished, the selected peptide hypothesises are shown in the manual

validation interface of Peptizer. The following section explains how to handle the task

results in Peptizer’s manual validation interface.

3.2.1 Overview

The main functions of the manual validation interface of Peptizer are shown in figure 3.4.

The peptide hypothesises selected by the criteria defined by Agents and AgentAggregators

are listed in the Identification Tree. The tree header displays the size and the overall

3RapidMiner is an open-source data mining solution combining both leading-edge technologies and a
broad functional range. Applications of Rapidminer cover a wide range of real-world data mining tasks.
More information on the Rapidminer community edition can be found at
http://rapid-i.com/content/blogcategory/10/69/lang,en/

4R is a free software environment for statistical computing and graphics.
More information on R can be found at http://www.r-project.org/

http://rapid-i.com/content/blogcategory/10/69/lang,en/
http://www.r-project.org/

3.2. HANDLING A PEPTIZER TASK 12

validation status. Each spectrum node in the tree is an identified MS/MS spectrum and

unfolds peptide hypothesises from this MS/MS spectrum as tree leaves. Also, the tree can

be filtered by validation status or by Agent vote.

By double-clicking a spectrum node, a new MS/MS spectrum identification tab is

added into the central panel. Therein, the suggested peptide sequence and MS/MS spec-

trum annotated by fragmentation information is presented. In the bottom of a MS/MS

spectrum identification tab an information table is shown with both general and Agent in-

formation are shown. The MS/MS spectrum identification can be validated by the buttons

on the bottom right edge.

Finally, in the very bottom, the Status Pane logs actions performed in Peptizer.

3.2. HANDLING A PEPTIZER TASK 13

MS/MS spectrum identification

Identification
Tree

Status Pane

Figure 3.4: An overview of the main functions of the Peptizer validation gui. On the left side
is the Identification Tree with the selected MS/MS spectra. By double clicking a
spectrum tree node, a MS/MS spectrum identification tab of that spectrum is added
in the central panel. In the bottom, the Status Pane is updated upon a variety of
actions.

3.2. HANDLING A PEPTIZER TASK 14

3.2.2 Identification tree

The identification tree is shown in figure 3.5

The Identification Tree header displays a number summary of the validation status. In

figure 3.5, the header "O of 12 validated. (0%)" means that none of the 12 selected

MS/MS spectra was validated. Each of these 12 spectra are presented as spectrum nodes.

By double-clicking a spectrum node, a new MS/MS spectrum identification tab is added

in the center panel (see 3.2.3). Such a spectrum node has the folowing structure:

Spectrum list identifier (Number of confident peptide hypothesises)

The spectrum node displays the number of confident peptide hypothesises, which reside

as tree leaves beyond each spectrum node. For example "Spectrum 5 (2)" in figure 3.5

indicates that there were 2 confident peptide hypothesises for MS/MS spectrum 5. Such a

peptide hypothesis leaf has the following structure:

Modified peptide sequence | Mascot Ionscore (Mascot Identity Threshold)

Upon validating a MS/MS spectrum, the spectrum node colours green or red when respec-

tively accepting or rejecting the spectrum node. Also note that the tree header updates

the validation status.

A filter can be applied on the Identification Tree, which facilitates navigation through

larger trees.

Apply a filter by clicking the menu bar in the top:

Task // Filter // ...

Disable one or both filters by clicking the menu bar in the top:

Task // Filter // Disable filters

The effect of two different filters is shown in figure 3.6.

Agent filter shows MS/MS spectrum identifications by Agent votes.

Validation filter shows MS/MS spectrum identifications that have not been validated

yet.

3.2. HANDLING A PEPTIZER TASK 15

Figure 3.5: The Identification Tree lists the selected MS/MS spectra. The tree header displays
the size and the validation status. The tree unfolds first with spectrum nodes and
then with peptide hypothesis nodes. By double-clicking the spectrum node, its
peptide hypothesises are presented in detail in another panel.

No filter Agent filter Validation filter

Figure 3.6: The Identification Tree filters. On the left, no filters are applied. In the middle,
the Agent filter was applied and therefore only the MS/MS spectrum identifications
with a selective vote for that Agent are shown. On the right, the validation filter
was applied and therefore all validated MS/MS spectrum identifications are now
hidden.

3.2. HANDLING A PEPTIZER TASK 16

3.2.3 MS/MS spectrum identification tab

The central panel displays multiple tabs. Each tab is a MS/MS spectrum identification

tab showing all details on one MS/MS spectrum and its proposed peptide hypothesis(es).

These peptide hypothesises are theoretically fragmented by Peptizer to align them with

the MS/MS spectrum. This yields fragmentation information that is combined with

general information. The MS/MS spectrum identification tab also shows pluggable

information driven by Agent inspections. Finally, an MS/MS spectrum identification

can be validated here.

These different types of information are illustrated below(figure 3.7).

A MS/MS spectrum identification can be closed in the pop-up menu by right-clicking the

tab or by clicking the small ’x’ button on the top-right. All spectrum tabs can be cleared

by clicking the large ’X’ on the top-right.

Fragmentation information: The annotated MS/MS spectrum

The MS/MS spectrum is stored in the Mascot result files. This is used to draw the MS/MS

spectrum on a custom Spectrumpanel component. The X-axis and Y-axis respectively plot

the mass over charge and intensity values of the fragment ions. The user can interpret the

fragmentation spectrum by the following actions:

Left click in the spectrum and drag a mass over charge interval to zoom into that

range.

Right click zooms out to the complete MS/MS spectrum.

Hoovering the cursor over a peak shows the mass over charge value for that peak.

Left click on a peak starts peak-picking. If the cursor is moved on top of another peak,

the mass over charge difference of those peaks is shown. By clicking another peak,

this difference in mass is fixed and peak picking can be continued. Note that if this

mass difference corresponds to an amino acid or a modified amino acid, the mass

difference is annotated by that component.

Ctrl + Left click resets the primary peak picking.

3.2. HANDLING A PEPTIZER TASK 17

Fragmentation information

General and Pluggable information

Validation

Figure 3.7: Each MS/MS spectrum identification tab displays information on a single MS/MS
spectrum and its confident peptide hypothesis(es). In this tab, Peptizer combines
fragmentation, general and pluggable information along with validations.

Alt + Left click holds the primary peak picking in a red font and starts a secondary

peak-picking.

3.2. HANDLING A PEPTIZER TASK 18

As Peptizer simulates the theoretical fragmentation of the peptide hypothesis, it can an-

notate MS/MS spectra.

For better understanding, the Mascot ”ionseries” variable must first be explained. Mascot

scores a peptide hypothesis for a MS/MS spectrum by the evidence found for a specific

type of fragment ions. Two different types of fragment ions can for example be b-ions and

y-ions, while double charged b++-ions and y++-ions are two other types. The different

types of fragment ions are listed in the table below.

Ion Type Neutral Mr

a [N]+[M]-CHO

a* a-NH3

a° a-H2O

b [N]+[M]-H

b* b-NH3

b° b-H2O

c [N]+[M]+NH2

d a - partial side chain

v y - complete side chain

w z - partial side chain

x [C]+[M]+CO-H

y [C]+[M]+H

y* y-NH3

y° y-H2O

z [C]+[M]-NH2

The fragment ion masses can be calculated when [N] is the molecular mass of the neutral

N-terminal group, [C] is the molecular mass of the neutral C-terminal group and [M] is

molecular mass of the neutral amino acid residues.5

The ionseries variable comes with each peptide hypothesis and lists the ion types that Mas-

cot considered relevant to propose this peptide hypothesis. Opposite to the Mascot HTML

result page, this valuable information is used when annotating the MS/MS spectrum. This

is illustrated by an annotated MS/MS spectrum shown in figure 3.8.

The relevance of the ion type is encoded by the prefix:

5More information on the different types of ionseries can be found on-line at the Mascot help pages.
http://www.matrixscience.com/help/fragmentation_help.html

http://www.matrixscience.com/help/fragmentation_help.html

3.2. HANDLING A PEPTIZER TASK 19

Validation

Figure 3.8: The MS/MS spectrum annotated by relevant fragment ion types.

plain y3 means that Mascot found y-ions significant and used these to score the peptide

hypothesis.

hash #b4 means that Mascot found b-ions significant, however they were not used to

score the peptide hypothesis.

ampercent &y++3 means that Mascot found double charged y-ions not significant and

they were not used to score the peptide hypothesis.

Finally, the Mascot and Fused annotation types can now also be explained.

Mascot annotations show those fragment ion types significant for Mascot. Moreover,

only the most relevant peaks are annotated.6

Fused annotation show the Mascot annotations plus immonium ions and the non-significant

ion types (those prefixed with ’&’). Also, all peaks are annotated if they are more

intense then 10% of the most intense peak.

Swap between both types by clicking the corresponding radio button at the top of the

panel.

6The most relevant peaks by the Mascot annotation are defined by the PeaksUsedFromIons1 variable
of a peptide hypothesis. This is the number of peaks that were used to propose the peptide hypothesis.

3.2. HANDLING A PEPTIZER TASK 20

As such, one can briefly inspect the MS/MS spectrum and its peptide hypothesises, as

suggested by Mascot and supplemented with additionla fragment ion data.

Fragmentation information: The annotated peptide sequence

After simulating the theoretical fragmentation of the peptide hypothesis, Peptizer aligns

this fragmentation information with the peptide sequence. This type of presentation was

inspired by GPMDB.7

An illustration of an annotated sequence is shown in figure 3.9.

b-ions

y-ions

Figure 3.9: The peptide sequence annotated by b and y fragment ions.

The image is interpreted as follows. If the peptide bond fragmented and led to a b or b++

ion, a blue bar is shown below that peptide bond. Else, if the peptide bond fragmented and

lead to a y or y++ ion, a red bar is shown above that peptide bond. All bars are relative

to the peak intensity, where the most intense annotated peak in the MS/MS spectrum is

set as the maximum bar.

The fragmentation annotation on the MS/MS spectrum and the peptide sequence are

complementary. This is illustrated in figure 3.10. Here, the y1 and b7 ion are each on

one side of the MS/MS spectrum, they do however originate from fragmentation of the

same peptide bond. This cannot easily be seen in the annotated MS/MS spectrum since

it is based on mass over charge values. Moreover, in this example, the annotated sequence

shows that the C-terminal end of the peptide fragmented well and further indicates which

peptide bonds broke most efficiently. Still, the annotated MS/MS spectrum is indispensable

7The Global Proteome Machine Database was constructed to utilize the information obtained by GPM
servers to aid in the difficult process of validating MS/MS spectrum identifications as well as protein
coverage patterns. http://gpmdb.thegpm.org/

http://gpmdb.thegpm.org/

3.2. HANDLING A PEPTIZER TASK 21

as for instance the spectrum quality and presence of intense but non-annotated peaks are

important observations.

Figure 3.10: The annotation on the peptide sequence in the top and on the MS/MS spectrum
in the bottom are complementary. While the peptide sequence annotation is based
on peptide bonds, the MS/MS spectrum annotation is based on mass over charge
values.

General and Pluggable information

The bottom of the MS/MS spectrum identification tab contains an information-rich ta-

ble on all confident peptide hypothesises. Both general and pluggable information are

combined in this table.

An example is shown in figure 3.11.

The first column lists the row identifiers. The other columns represent a confident peptide

hypothesis, ordered according to decreasing confidence from left to right. By default, the

most confident peptide hypothesis is focused by Peptizer. If there is more then one confident

peptide hypothesis, right-click to select the appropriate column to focus on. The selected

peptide hypothesis annotates the MS/MS spectrum and the sequence image. Moreover,

3.2. HANDLING A PEPTIZER TASK 22

Figure 3.11: The information table with both general and pluggable information. Each column
shows a confident peptide hypothesis, ordered according to decreasing confidence
from left to right. Each row shows an information unit. The upper rows show
pluggable information driven by Agent inspections and the lower rows show general
information. The Agent vote is reflected by the typeface of the cell.

by accepting a peptide hypothesis during validation, it is the focussed peptide hypothesis

that is selected while the other peptide hypothesises, if any, are automatically rejected.

The upper rows show pluggable information driven by Agent inspections. These cells

display a peptide hypothesis property that was judged by the Agent. The cell’s typeface

also reflects the Agent vote.

plain when the Agent voted neutral for selection of the peptide hypothesis.

bold when the Agent voted to select the peptide hypothesis.

italics when the Agent voted not to select the peptide hypothesis.

As such, one look at the table directly shows why Peptizer selected a peptide hypothesis.

The lower rows show general information, which is always available. Examples are the

peptide sequence, the protein source, the mass error, the MIS and the b-ion coverage.

Hint

A short tooltip describing the table row is shown by holding the mouse above the row.

3.3. SAVING THE RESULTS 23

Finally, the information table serves as a dense information scope on the peptide hypothesis.

This complements the fragmentation information of the peptide hypothesis. As such,

Peptizer provides an optimal environment to make the final decision on the validity of the

peptide hypothesis proposed for a MS/MS spectrum.

Validation

After a peptide hypothesis has been inspected by Agents and by the user, the user either

rejects or accepts the peptide hypothesis.

The validation functions are located in the right bottom part. To accept the peptide

hypothesis, click the button with the green OK icon. To reject the peptide hypothesis,

click the button with the red cross icon. Note that if there are multiple confident peptide

hypothesises in the table, it is the focused peptide hypothesis that is validated. Also, if one

is accepted, the others are automatically rejected. Both buttons (accept or reject) have an

alternative button with an extra ”text” mark. These buttons additionally show a dialog

wherein the validation can be argued. If the validation status must be reset, click the button

with the black reset sign. After validating a peptide hypothesis, its MS/MS spectrum

identification tab will close before the next non-validated MS/MS spectrum identification

tab opens.

3.2.4 Status pane

The status pane is always available. Simple messages are logged in the top status panel

while error messages are logged in the error window.

3.3 Saving the results

The input of Peptizer consists of MS/MS spectra and their peptide hypothesises. Within

Peptizer these can be inspected by multiple Agents resulting in a custom selection of

MS/MS spectra, which can then be validated. Then, the output of Peptizer consists of the

same MS/MS spectra and their peptide hypothesises, however these are now labelled by

Agent inspections and user validation. This additional information can be saved as well.

Either in a comma separated file format or in an ms lims database.

3.3. SAVING THE RESULTS 24

Save a selection task by by pressing Ctrl-S or by clicking the menu bar in the top:

Main // Save

The save dialog has two main parts. The upper serves to select which task must be saved

while the lower part serves to define what information must be included for each peptide

hypothesis.

Saving to comma separated value file

Both the general and pluggable information shown in the table (see 3.2.3) can be written

into a csv file. The save to csv dialog is shown in figure 3.12.

3.3. SAVING THE RESULTS 25

Figure 3.12: This dialog window serves to save the output into a csv file. Define the desired
content of the csv file by clicking the check box aside an information cell. Below
this content options to include other MS/MS spectra and their peptide hypothesis
beside those selected by Peptizer are provided. Another kind of optional output
are the user’s validation comments. Finally, a target to save the csv file must be
selected.

3.3. SAVING THE RESULTS 26

In this window, the user can choose the content of the csv file. Three parts can be distin-

guished:

Content . Select the information that must be saved. This table mirrors the information

table, so some or all of the general of pluggable information can be included in the

comma separated file.

Options .

Include validation comments Add the user validation comments as the last col-

umn.

Include confident identifications that did not match the profile Add con-

fident peptide hypothesises that were not selected by Peptizer.

Include non-confident identifications Add non-confident peptide hypothesises.

Include non-primary ranked hits Add all confident peptide hypothesises, also

if they are ranked second or third.

Target . Select a target file to write the output to.

Saving to PDF file

Where tab delimited files can be a starting point for further data analysis, PDF files are

definitely and end point. They have a single purpose for fast data sharing and therefore

still useful as email communication or web sharing. The biggest advantage of PDF files

being a wide spread format and high resolution graphics. Hence, sharing proteomics data

in public repositories such as PRIDE or PeptideAtlas should be favored at all time!

3.4. DISTRIBUTING PEPTIZER OBJECTS 27

Figure 3.13: The save method for a peptideidentification in PDF format. If there were multiple
peptide identifications selected by Peptizer, then a single pdf file with multiple
pages is created.

Saving to ms lims database

If the ms lims database was used as data source, the user validation can be persisted into

ms lims. The ”save to ms lims” dialog is shown in figure ??. At this stage, the new

information concerns the user validation. Therefore, no further options are provided as

all the MS/MS spectra and their peptide hypothesises are already stored in the ms lims

system.

3.4 Distributing Peptizer objects

Selected peptide hypothesises in Peptizer stand over time and space. If 250 peptide MS/MS

spectra and hypothesises must be manually validated, this could last a few days. Moreover,

3.5. UNDERSTANDING THE CONFIGURATION FILES 28

if doubts arise on validating a peptide hypothesis, a second opinion should be required. For

this use case, Peptizer can store and load the content of the manual validation environment.

Store a task by clicking the menu bar in the top:

Task // Store

All stores all the MS/MS spectra.

Accepted stores the MS/MS spectra that have been accepted upon validation. (Those

that are coloured green in the tree!)

Load a task by clicking the menu bar in the top:

Task // Load

Now, browse to the file that was previously stored to reload its content into Peptizer.

Hint

Go the example page on the Peptizer project web page to find such a file with a set of

MS/MS spectra and validated peptide hypothesises that can be reloaded into Peptizer.

This serves as an example set to start using Peptizer!

(http://genesis.ugent.be/peptizer/peptizer/download/examples.html)

3.5 Understanding the configuration files

The configuration files are essential to the plug-and-play concept of Peptizer. When Pep-

tizer starts, these configuration files declare which Agents and AgentAggregators are avail-

able to the user in Peptizer. Thus, when custom Agents are written in Java and added to

the configuration files, they will function rightaway in the Peptizer platform.

The configuration files are simple XML files and, as such, both computers and humans can

easily read and modify them. They must reside in the same folder as the Peptizer start-up

file. In total, there are four configuration files:

agent.xml lists the Agents that will be available to construct a voting panel and inspect

peptide hypothesises.

http://genesis.ugent.be/peptizer/peptizer/download/examples.html

3.5. UNDERSTANDING THE CONFIGURATION FILES 29

aggregator.xml lists the AgentAggregators that will be available to aggregate the Agent

inspections.

table.xml lists the general table rows that show the information in the information table.

general.xml lists general configuration properties.

Each of these are explained in the following subsections.

agent.xml

aggregator.xml

table.xml

All of these have a similar code structure. This is illustrated below by a section of the

default agent.xml file.

<agent>

1) <!-- This Agent inspects the score delta between the MIS and MIT." -->

2) <uniqueid>be.proteomics.mat.util.agents.DeltaScore</uniqueid>

3) <property name="name">Delta threshold</property>

4) <property name="active">true</property>

5) <property name="veto">false</property>

6) <property name="delta">10</property>

</agent>

The outer <agent> tags declare the start of a new section. This can also be aggregator

or tablerow in the aggregator.xml or table.xml file respectively. Within this section, the

following lines are present:

line 1. describes this section in a xml comment line. Note that this is only used as a

guidance. The tooltip descriptions within Peptizer are hard coded.

line 2. identifies this section in a unique manner. Since Java guarantees that each class

has a unique class name, this is used as the unique identifier for an Agent.8

8The class name consists of the package structure and ends with the class itself. Consider it as a road
to the class file whereas the track starts from ”be” to ”proteomics” andsoon.

3.5. UNDERSTANDING THE CONFIGURATION FILES 30

line 3. names this section. It is the functional name used within the Peptizer GUI.

line 456. define custom properties for this section. Both the active and veto must have

default boolean values when Peptizer starts. Moreover, the delta parameters defines

the delta value (here as the required score difference between MIS and MIT) upon

that Agents inspection.

Note that if there are no options for an Agent, AgentAggregator or Tablerow, no custom

property lines will be shown. Else, if there are multiple options, there will also be multiple

custom parameter lines.

general.xml

These are various settings for the Peptizer application. Just like the other configuration

files, the values can be modified by default Peptizer values.

<general>

<!-- Default annotation radiobutton. -->

<property name="RDB_ANNOTATION">0</property>

<!-- Default tree height. -->

<property name="TREE_HEIGHT">20</property>

<!-- Default confidence throughout MAT. -->

<property name="DEFAULT_ALPHA">0.05</property>

. . .

</general>

The outer <general> tags line up the start of the general properties part.

RDB ANNOTATION Set the default MS/MS spectrum annotation type for the GUI:

0 will show the Mascot annotations and 1 will show the Fused annotations (see 3.2.3).

TREE HEIGHT Set the number of pixels between the tree nodes.

DEFAULT ALPHA Set the alpha value for starting a new selection task.

ITERATOR FOLDER PATH Set the preset folder for the Datfile folder data source.

ITERATOR FILE PATH Set the preset file for the Datfile data source.

3.6. USING PEPTIZER FROM THE COMMAND LINE 31

SAVEVALIDATION CSV Set the preset file for the Datfile data source

MODIFIEDSEQUENCE FRAGMENTATION PANEL Set the annotations on the

modified or the non-modified peptide sequence if respectively true or false.

CONNECTION PROPERTIES Set the coordinates to establish a ms lims database

connection. This file can include the DRIVER and URL fields from the connection

dialog if Peptizer is used to connect to the ms lims database system.

FUSED INTENSITY PERCENTAGE Set the lower intensity threshold as a percent-

age in relation to the most intense fragmention up to where peaks from the MS/MS

spectrum will be annotated.

ENABLE CONFIDENT NONSELECTED OBJECT.OUTPUTSTREAM Set Pep-

tizer to stream confident peptide hypothesises that were not selected into a temporary

file. If set to true, an extra option appears in the SavetoCSV function to save these

peptide hypothesises as well. Note that this temporary file is deleted after Peptizer

is closed and this comes along with a performance cost.

ENABLE NONCONFIDENT OBJECT.OUTPUTSTREAM Set Peptizer to stream

non-confident peptide hypothesises into a temporary file. As such, data on the nega-

tive population can easily be gathered. If set to true, an extra option appears in the

SavetoCSV function to save these peptide hypothesises as well. Note that this tem-

porary file is deleted after Peptizer is closed and this comes along with a performance

cost.

Saving these allows to easily gather on the negative population of peptide hypothe-

sises.

3.6 Using Peptizer from the command line

Basically, this means that a new Peptizer selection task can be started by a single command.

Commands are run from the commands window or from the shell respectively in a windows

or a UNIX environment. As this is no convenient environment for most users, running

Peptizer from the command line should only be considered by informatics oriented users.

3.6. USING PEPTIZER FROM THE COMMAND LINE 32

Why is this useful? By the command line, multiple Peptizer tasks can be started with

each task having a different Agent configuration or a distinct data source. Also, a Peptizer

selection task can be started at a central server without any graphical interaction.

This can be done in three steps:

1. Sets the classpath to define the classes that must be loaded into the Java virtual

machine.9 Therefore, this part defines the libraries required by Peptizer.10

set CLASSPATH=.\config;.\peptizer-1.1.jar;.\mascot_datfile-1.5.3.jar; ..

2. Starts a Java process by a command. Note that here you can also supply Java Vir-

tual Machine properties as a parameter. In the example, -Xmx512M reserves 512mb of

memory to run this Peptizer task. Finally in this step, the Peptizer Class is supplied

whose main method can start a Peptizer task in command line mode.

java -Xmx512m be.proteomics.mat.main.Peptizer

3. Sets the program parameters to run a selection task.

--sourcetype file

--source C:\\Temp\\F004071.dat

--target C:\\Output\\result.csv

--table C:\\applications\\Peptizer\\table.xml

--agent C:\\applications\\Peptizer\\agent.xml

--aggregator C:\\applications\\Peptizer\\aggregator.xml

--general C:\\applications\\Peptizer\\general.xml

--parsing memory

Note that by running be.proteomics.mat.main.Peptizer without the program parame-

ters a help text appears in the command line.

This will select all confident peptide hypothesises from F004071.dat that match the profile

by the Agents and AgentAggregator defined in agent.xml and aggregator.xml. The

9Find out more on the Java classpath at http://java.sun.com/j2se/1.3/docs/tooldocs/win32/

classpath.html
10The Java libraries required by Peptizer are listed at the project website download page http://

genesis.ugent.be/peptizer/peptizer/download/main.html

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/classpath.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/classpath.html
http://genesis.ugent.be/peptizer/peptizer/download/main.html
http://genesis.ugent.be/peptizer/peptizer/download/main.html

3.6. USING PEPTIZER FROM THE COMMAND LINE 33

probability of a confident peptide hypothesis is defined in general.xml. Finally, a csv file

will be written as result.csv containing general, pluggable information and a selection

label as columns.

34

Chapter 4

Extending Peptizer

4.1 Introduction

Upon inspecting MS/MS identification results, a critical scientist has certain expecta-

tions. Some of these are automatically used by the database search algorithm to identify

an MS/MS spectrum while others are not applicable on a large scale and therefore not

used. To the first group belong mass differences between fragment ions as these are gen-

eral and informative for the peptide sequence. Database search algorithms commonly use

these as robust features to interpret a MS/MS spectrum. To the second group belong

less general features. For example, it is known that proline-containing peptides are more

prone to fragment N-terminally to proline upon CID. But, since not every peptide contains

a proline database search algorithms cannot use this as a general robust feature. Hence,

this type of information can still be used in a complementary level aside the database

search algorithm.

The Peptizer platform does just this. If a critical scientist has certain expectations for

his or her MS/MS results, these expectations can be translated into custom Agents.

Moreover, the methodology to group these expectations can be translated into a custom

AgentAggregator. Both suggest extending Peptizer to automate the inspections of

a critical scientist’s expectations.

This chapter explains how to extend Peptizer by creating custom Agents and AgentAggre-

gators.

4.2. OVERVIEW 35

4.2 Overview

Both the Agent and the AgentAggregator have a basic input output operation. This is

illustrated by the figures below.

Input Output Processing

-

Agent vote
 * Positive for selection
 * Neutral for selection
 * Negative for selection

Peptide identification
 * MS/MS spectrum
 * 1..n Peptide hypothesises

Agent

Figure 4.1: The basic input/output structure of an Agent. As input, the Agent receives a
PeptideIdentification object that consists of a single MS/MS spectrum and a number
of peptides hypothesises suggested for that spectrum. After this input has been
processed by an Agent, a vote is casted as output. This vote refelcts the Agent’s
opinion for selecting or not selecting the given peptide identification.

Input Output Processing

Agent aggregator judgement
 * is matching
 * is not matching

Agent
Aggregator

Agent votes
 * i x Positive for selection
 * j x Neutral for selection
 * k x Negative for selection

Figure 4.2: The basic input/output structure of an AgentAggregator. As input, the AgentAg-
gregator receives a collection of Agent votes. Therein, i Agents vote for selection
of a peptide identification, j Agents vote neutral for selection while k Agents vote
against selection. The Agent agregator then processes all votes and concludes as
output whether or not the peptide identification is matching and should therefore
be selected or not.

4.3. WRITING THE FIRST AGENT 36

This concept must be kept in mind when extending Peptizer. Next up are instructions for

creating an easy Agent followed by a more complex Agent. Finally, the creation of an

easy AgentAggregator is instructed as well.

4.3 Writing the first Agent

For the easy example, a length Agent will be made. Its aim is to verify whether a

peptide’s length is shorter or longer then a given threshold length. The Agent

could then for example be used to select short peptides as these are more prone to generate

false positive peptide identifications.

First and most important: each custom Agent must extend the abstract Agent class.

Thereby, each Agent has common variables and a common signature. Examples for

common variables are a name, a status for both the activity and the veto option as well as

a common method to get a unique identifier.

Second, to set an Agent’s variables from the agent.xml configuration file, an Agent must be

initialized. After being initialized, an Agent can then receive input and produce output.

The initialization is also the place to define custom parameters like the threshold length

in this example. This is illustrated in the code snapshot below. There, the value of the

LENGTH variable is used to get the appropriate value from the agent.xml configuration

file.

Algorithm 1 Constructing an Agent

public class LengthAgent extends Agent {

public static final String LENGTH = "length";

public LengthAgent(){

initialize(LENGTH);

}

}

Third, the inspect method must be implemented from the abstract Agent class. This

method reflects the basic input/output structure of an Agent: a PeptideIdentification

object is an input parameter and an array of AgentVotes is returned as output

4.3. WRITING THE FIRST AGENT 37

(one for each peptide hypothesis from the MS/MS spectrum). Note that the different votes

are static by on the AgentVote enum.

The inspect method for the LengthAgent can be seen as following. Get the length threshold

as a local variable from a Properties object that was created during initialization of the

Agent. Then create an array to fit n Agentvotes where n equals the number of confident

peptide hypothesises made for the MS/MS spectrum (so we decide to only inspect on

confident peptide hypothesises). Then an AgentReport is created for each of these peptide

hypothesesis, wherein results are persisted.

If the length of the peptide sequence is less then the length threshold, the LengthAgent

votes positive for selection. Else it votes neutral for selection. Finaly, the reports are

made and stored along the PeptideIdentification. These reports are used to display the

PeptideIdentification in the Peptizer graphical user interface.

Algorithm 2 Inspect method of the Length Agent

public AgentVote[] inspect(PeptideIdentification aPeptideIdentification) {

int lLength = Integer.parseInt((String) (this.iProperties.get(LENGTH)));

AgentVote[] lVotes = new AgentVote[aPeptideIdentification.getNumberOfConfidentPeptideHits()];

for (int i = 0; i < lVotes.length; i++) {

PeptideHit lPeptideHit = aPeptideIdentification.getPeptideHit(i);

AgentReport lReport = new AgentReport(getUniqueID());

int lPeptideLength = lPeptideHit.getSequence().length();

if (lPeptideLength < lLength) {

lVotes[i] = AgentVote.POSITIVE_FOR_SELECTION;

} else {

lVotes[i] = AgentVote.NEUTRAL_FOR_SELECTION;

}

lReport.addReport(AgentReport.RK_RESULT, lVotes[i]);

lReport.addReport(AgentReport.RK_TABLEDATA, new Integer(lPeptideLength));

lReport.addReport(AgentReport.RK_ARFF, new Integer(lPeptideLength));

aPeptideIdentification.addAgentReport(i + 1, getUniqueID(), lReport);

}

return lVotes;

}

In the end, the LengthAgent returns an Agentvote for each confident peptide hypothe-

4.4. A MORE ADVANCED AGENT 38

seis. Whereas each vote reflects the length of the peptide in relation to the given length

threshold.

After this easy example, lets create an Agent with more advance processing features.

4.4 A more advanced Agent

4.4.1 Background

This section starts with a quote from a 2004 paper by Ross et al.:

We have developed a multiplexed set of reagents for quantitative protein analysis
that place isobaric mass labels at the N termini and lysine side chains of peptides
in a digest mixture. The reagents are differentially isotopically labelled such that
all derivatized peptides are isobaric and chromatographically indistinguishable, but
yield signature or reporter ions following CID that can be used to identify and
quantify individual members of the multiplex set.
Ross, P. L. et al. (2004). ”Multiplexed protein quantitation in Saccharomyces cerevisiae
using amine-reactive isobaric tagging reagents.” Mol Cell Proteomics 3(12): 1154-69.

Ross et al. introduced the iTRAQT M methodology that has become a widespread tool

for quantitative proteomics. If this chemistry is used, then iTRAQT M reporter ions are

expected to appear in the MS/MS spectrum. If these reporter ions appear in unequal

intensities, then the corresponding peptide was differentially abundant in both samples.

This can now be defined as a case to create a new Agent:

Do iTRAQT M reporter ions appear at different intensity?

4.4.2 Creating a custom Agent to inspect expectations

A custom Agent inspecting the appearance of iTRAQT M reporter ions in the MS/MS

spectrum will now be created. This Agent will be named as the ReporterIonAgent. Just as

any other Agent in Peptizer, the ReporterIonAgent must extend the abstract Class Agent.

This abstract class has common methods and variables among all Agents.11 Examples of

common features are the name, the activity or the veto status as well as the getters and

11Read more on abstract classes at http://java.sun.com/docs/books/tutorial/java/IandI/

abstract.html

http://java.sun.com/docs/books/tutorial/java/IandI/abstract.html
http://java.sun.com/docs/books/tutorial/java/IandI/abstract.html

4.4. A MORE ADVANCED AGENT 39

the setters to modify these variables. As such, the ReporterIonAgent must only encode its

differences from other Agents.

A custom Agent like the ReporterIonAgent can be created from the template signature

of an Agent extension. This template is availlable as the DummyAgent in the standard

Peptizer distribution.12

Parameters Declare optional parameters that are used as options by this Agent.

The mass over charge values for reporter ions

Constructor Declare the instantiation method of an Agent extension.

The initiation of the super class Agent and the set-up of the private variables of

ReporterIonAgent

Inspection Define the inspection logic that the Agent must perform.

The inspection of the Agent reports whether ITRAQ reporter ions appear at different

intensities

Description Document the aim of this Agent.

These elements are illustrated by the DummyAgent in the following Java code snippet.

12The DummyAgent can be found in the Peptizer package be.proteomics.mat.util.agents. Click to browse
the Java source code or the JavaDocs on this DummyAgent template to create custom Agents.

http://genesis.ugent.be/peptizer/xref/be/proteomics/mat/util/agents/DummyAgent.html
http://genesis.ugent.be/peptizer/apidocs/be/proteomics/mat/util/agents/DummyAgent.html

4.4. A MORE ADVANCED AGENT 40

Algorithm 3 Agent signature in a code outline

public class DummyAgent extends Agent {

//Parameters

public static final String DUMMY_PROPERTY = "dummy";

//Constructor

public DummyAgent(){

super();

...

}

//Inspection

public AgentVote[] inspect(PeptideIdentification aPeptideIdentification){

AgentVote vote = null;

...

return vote;

}

//Description

public String getDescription(){

return "Agent description";

}

}

Ok, so now being aware of the code signature of an Agent, the ReporterIonAgent can be

created similarly.

PARAMETERS

First, the different parameters required by this Agent must be defined. Since these are

read from the configuration file, they must have fixed identifiers. There are two parameters

holding the values for the two reporter ion masses and a fold ratio threshold between

the two reporter ion intensities for this Agent to inspect. Finally, there is also a parameter

on the error tolerance that is allowed upon matching the reporter ion masses with a

fragment ion from the MS/MS spectrum.

In Java, each of these is encoded as final static Strings, since these are then always identical

and accessible.

The parameters for the ReporterIonAgent are illustrated in the following Java code snippet.

4.4. A MORE ADVANCED AGENT 41

Algorithm 4 Parameters for the ReporterIonAgent

//Mass over charge value for the first reporter ion.

public static final String MASS_1 = "reporter_mz_1";

//Mass over charge value for the second reporter ion.

public static final String MASS_2 = "reporter_mz_2";

//Fold ratio between the two reporter ions.

public static final String RATIO = "ratio";

//Error tolerance for matching the expected

//reporter ion mass over charge to a fragment ion.

public static final String ERROR = "error";

Ok, after defining the parameters, the code for constructing the Agent can be written.

CONSTRUCTOR

The constructor is a special kind of routine as it is only once used upon starting a new

Java object. The following parts can be recognized in the code:

Call superclass constructor to initiate all methods and variables common to all Agents

at their superclass.

Read properties from the agent.xml configuration file for the Agent with this unique

identifier.

Set general variables as given by the agent.xml configuration file to general agent vari-

ables like the name, the active and the veto status.

Set specific variables as given by the agent.xml configuration file to specific agent vari-

ables like the reporter ion masses, the ratio and the error tolerance.

Note that this is enclosed by a try & catch statement. If these variables are not in-

side the configuration file, then Peptizer will log an exceptional GUI message before

shutting down the application.

The construction of the ReporterIonAgent is illustrated in the following Java code snippet:

4.4. A MORE ADVANCED AGENT 42

Algorithm 5 Construction of an Agent

/**

* Construct a new instance of the ReporterIonAgent.

*/

public ReporterIonAgent() {

super();

Properties prop = MatConfig.getInstance().getAgentProperties(this.getUniqueID());

super.setName(prop.getProperty("name"));

super.setActive(Boolean.valueOf(prop.getProperty("active")));

super.setVeto(Boolean.valueOf(prop.getProperty("veto")));

try {

this.iProperties.put(MASS_1, prop.getProperty(MASS_1));

this.iProperties.put(MASS_2, prop.getProperty(MASS_2));

this.iProperties.put(RATIO, prop.getProperty(RATIO));

this.iProperties.put(ERROR, prop.getProperty(ERROR));

} catch (NullPointerException npe) {

MatLogger.logExceptionalGUIMessage(

"Missing Parameter!!", "Parameters " + MASS_1 + ", " + MASS_2 + " , " +

RATIO + "and "+ ERROR + " are required! for Agent " + this.getName() +

" !!\nExiting..");

System.exit(0);

}

}

With all this information, the ReporterIonAgent is ready to inspect an MS/MS spectrum

for its reporter ions.

INSPECTION

The inspection is the core of an Agent since this logic leads to the Agent’s vote. The

input of the inspection is a PeptideIdentifcation object. Such an object has a single

MS/MS spectrum and multiple peptide hypothesises. The output of the inspection is a

vote as an AgentVote enumeration. There are three types of votes:

1. A vote approving to select the peptide hypothesis for a given property.

Peptide hypothesises of MS/MS spectra with deviating reporter ion intensities

2. A vote being neutral to select the peptide hypothesis for a given property.

Peptide hypothesises from MS/MS spectra with equal reporter ion intensities

4.4. A MORE ADVANCED AGENT 43

3. A vote denying to select the peptide hypothesis for a given property.

Peptide hypothesises from MS/MS spectra lacking reporter ion fragment ions

Note that examples for the ReporterIonAgent shown in italics depend on expectations

of the scenario, on what peptide hypothesises are interesting to the case that is initially

defined. Therefore it is very important to document the Agents in depth.

This ReporterIonAgent is documented exhaustively so it is possible to read through to

code step by step. As such, the source code of the ReporterIonAgent is included below.

Comments are formatted in grey italics while Java keywords are blue and text values are

green. The inspection part of the code starts from line 82. From thereon, the following

parts can be recognized:

Preparing the variables (line 109) Here, a set of variables are defined that are needed

to perform the inspection.

Variables to hold the observed peak intensity or matching status.

Inspecting for the reporter ions(line 145) Here, the actual inspection is performed.

Finding the reporter ions in the MS/MS spectrum, calculate their intensity ratio and

test if it meets the expectations.

Making an inspection report and committing the votes(line 236) Here, the results

of the inspection are stored and returned as an AgentVote for each peptide hypoth-

esis.

Store the intensity ratio and the votes in a report that will be read by the AgentAg-

gregator.

Fully documented source code for the ReporterIonAgent

package peptizer.agents.custom;1
2

import be.proteomics.mascotdatfile.util.interfaces.Spectrum;3
import be.proteomics.mascotdatfile.util.mascot.Peak;4
import be.proteomics.mat.MatConfig;5
import be.proteomics.mat.interfaces.Agent;6
import be.proteomics.mat.util.AgentReport;7
import be.proteomics.mat.util.PeptideIdentification;8
import be.proteomics.mat.util.enumerator.AgentVote;9
import be.proteomics.mat.util.fileio.MatLogger;10

11
import java.math.BigDecimal;12
import java.util.Properties;13
/**14
 * Created by IntelliJ IDEA.15
 * User: kenny16
 * Date: 18-jun-200817
 * Time: 15:30:2818
 */19

20
/**21
 * Class description:22
 * ------------------23
 * This class was developed to inspect for deviating reporter ion intensities.24
 */25
public class ReporterIonAgent extends Agent {26

27
 /**28
 * PARAMETERS29
 * ----------30
 * String identifiers for the parameters in the agent.xml configuration file.31
 */32

33
 // Mass over charge parameter for the first reporter ion.34
 public static final String MASS_1 = "reporter_mz_1";35

36
 // Mass over charge parameter for the second reporter ion.37
 public static final String MASS_2 = "reporter_mz_2";38

39
 // Fold ratio parameter between the two reporter ions you consider as deviating.40
 public static final String RATIO = "ratio";41

42
 // Error tolerance for matching the expected reporter43
 // ion mass over charge values to a fragmention in the MS/MS spectrum.44
 public static final String ERROR = "error";45

46
 /**47
 * CONSTRUCTOR48
 * -----------49
 * Construct a new instance of the ReporterIonAgent.50
 */51
 public ReporterIonAgent() {52
 // 1. Calls the constructor of the Agent superclass.53
 super();54
 // 2. Gets the properties for this Agent.55
 // A singleton MatConfig object reads the agent.xml configuration file upon starting Peptizer.56
 // The Properties of each Agent can be then be retrieved by the unique identifier of an Agent.57
 Properties prop = MatConfig.getInstance().getAgentProperties(this.getUniqueID());58

59
 try {60

Fully documented source code for the ReporterIonAgent

 // 2a. Sets common properties shared among all Agents.61
 super.setName(prop.getProperty("name"));62
 super.setActive(Boolean.valueOf(prop.getProperty("active")));63
 super.setVeto(Boolean.valueOf(prop.getProperty("veto")));64

65
 // 2b. Sets specific properties for this ReporterIonAgent.66
 // Masses of the two reporter ions, the threshold ratio and the mass error tolerance.67
 this.iProperties.put(MASS_1, prop.getProperty(MASS_1));68
 this.iProperties.put(MASS_2, prop.getProperty(MASS_2));69
 this.iProperties.put(RATIO, prop.getProperty(RATIO));70
 this.iProperties.put(ERROR, prop.getProperty(ERROR));71
 } catch (NullPointerException npe) {72
 // Note that an exception is thrown when one of the parameters is missing!73
 MatLogger.logExceptionalGUIMessage("Missing Parameter!!",74
 "Parameters " + MASS_1 + ", " + MASS_2 + ", " + RATIO + "and " + ERROR +75
 " are required! for Agent \"" + this.getName() + "\" !!\nExiting..");76
 System.exit(0);77
 }78
 }79

80
 /**81
 * INSPECTION82
 * ----------83
 * The inspection is the core of an Agent since this logic leads to the Agent's vote.84

85
 * This method returns an array of AgentVote objects, reflecting this Agent's idea86
 * whether to select or not to select the peptide hypothesis.87

88
 * All Agent Implementations must also create and store AgentReport for each peptide hypothesis.89
 *90
 * @param aPeptideIdentification PeptideIdentification that has to be inspected.91
 * @return AgentVote[] as a vote upon inspection for each the confident peptide hypothesises.92
 * AgentVotes[0] gives the inspection result on PeptideHit 193
 * AgentVotes[1] gives the inspection result on PeptideHit 294
 * AgentVotes[n] gives the inspection result on PeptideHit n+195

96
 * Where the different AgentVotes can be:97

98
 * a vote approving the selection of the peptide hypothesis.99
 * a vote indifferent to the selection.100
 * a vote objecting to select the peptide hypothesis.101
 */102
 public AgentVote[] inspect(PeptideIdentification aPeptideIdentification) {103

104
 // A. PREPARING THE VARIABLES105
 //***************************106

107
 // 1. The reporter ion masses.108
 double lReporterMass_1 = Double.parseDouble((String) (this.iProperties.get(MASS_1)));109
 double lReporterMass_2 = Double.parseDouble((String) (this.iProperties.get(MASS_2)));110

111
 // 2. The fold ratio threshold.112
 double lRatio = Double.parseDouble((String) (this.iProperties.get(RATIO)));113

114
 // 3. The error tolerance.115
 double lError = Double.parseDouble((String) (this.iProperties.get(ERROR)));116

117
 // 4. Reserves an array with AgentVotes for each confident peptide hypothesis.118
 AgentVote[] lAgentVotes =119
 new AgentVote[aPeptideIdentification.getNumberOfConfidentPeptideHits()];120

Fully documented source code for the ReporterIonAgent

121
 // Since this inspection is dependent on the MS/MS spectrum,122
 // it will result in the same vote for each peptide hypothesis.123
 // Therefore, a single inspection is reused for each peptide hypothesis.124

125
 // 5. Initiate an AgentReport serving as a report for this inspection.126
 iReport = new AgentReport(getUniqueID());127

128
 // 6. Local variable to store the result shown in the information table.129
 String lResultForTable = "";130
 // 7. Local variable to store the result written in the arff file.131
 String lResultForArff = "";132

133
 // 8. Local variables for matching reporter ion 1 in the MS/MS spectrum.134
 boolean lReporter_1_match = false;135
 double lReporter_1_intensity = 0;136

137
 // 9. Local variables for matching reporter ion 2 in the MS/MS spectrum.138
 boolean lReporter_2_match = false;139
 double lReporter_2_intensity = 0;140

141
 // B. THE ACTUAL INSPECTION142
 //***************************************143

144
 // 1. Gets the MS/MS spectrum from the PeptideIdentification object145
 // that was given as a parameter to the inspect() method.146
 Spectrum lSpectrum = aPeptideIdentification.getSpectrum();147

148
 // 2. Gets the peaklist from this MS/MS spectrum.149
 Peak[] lPeaks = lSpectrum.getPeakList();150

151
 // 3. Iterates over all peaks through a for loop.152
 for (int i = 0; i < lPeaks.length; i++) {153
 Peak lPeak = lPeaks[i];154
 double lDelta_1 = lPeak.getMZ() - lReporterMass_1;155
 double lDelta_2 = lPeak.getMZ() - lReporterMass_2;156

157
 // 3i) If absolute value of the mass diference of this fragmention and the expected mass158
 // of reporter ion 1 is less then the defined error tolerance.159
 // Then there is a match!160
 if (Math.abs(lDelta_1) < lError) {161
 lReporter_1_match = true;162
 lReporter_1_intensity = lPeak.getIntensity();163
 }164

165
 // 3ii) Same idea for reporter ion 2.166
 if (Math.abs(lDelta_2) < lError) {167
 lReporter_2_match = true;168
 lReporter_2_intensity = lPeak.getIntensity();169
 }170

171
 // 3iii) For performance reasons: if both peaks were matched then the for loop can be exited.172
 if (lReporter_1_match && lReporter_2_match) {173
 break;174
 }175
 }176

177
 // 4. Checks the intensity ratio.178
 double lUpperBoundary;179
 double lLowerBoundary;180

Fully documented source code for the ReporterIonAgent

181
 // First an upper and a lower boundary must be defined for the Reporter Ions intensity ratio.182
 // If the experimental ratio between Reporter Ion 1 and Reporter Ion 2 is183
 // more then 1.5 or less then 0.66, then the two samples deviate by a factor of 1.5.184
 //185
 // If the user defined the factor as larger then 1, the upper boundary for an186
 // deviating ratio is given by 1 diveded by that factor.187
 // The lower boundary for an deviating ratio is given by 1 multiplied by that factor.188
 // Example:189
 // If (Ratio=1.5)190
 // Then lower boundary = 1.5 and upper boundary = 0.66191
 if (lRatio > 1) {192
 lUpperBoundary = 1 * lRatio;193
 lLowerBoundary = 1 / lRatio;194
 } else {195
 // If the user defined the facotr as smaller then 1, then it is the other way round.196
 lUpperBoundary = 1 / lRatio;197
 lLowerBoundary = 1 * lRatio;198
 }199

200
 // 5. Local variable for the intesity ratio between Reporter Ion 1 and Reporter Ion 2.201
 double lExperimentalRatio;202
 // Local boolean for the upcomming function to store whether the ratio between the Reporter Ions203
 // deviates more then the expected ratio.204
 boolean lDeviatingRatio;205

206
 // 6. Checks the intensities of the reporter ions!207

208
 // 6i) If this condition is true, then one of the reporter ions was not found!209
 // These are not selected as these are probably unlabeled peptides.210
 if (!lReporter_1_match || !lReporter_2_match) {211
 lDeviatingRatio = false;212
 lExperimentalRatio = 0;213
 // 6ii) Else both the reporter ions were found. Lets inspect their ratio.214
 } else {215
 lExperimentalRatio = lReporter_1_intensity / lReporter_2_intensity;216

217
 // The ExperimentalRatio between reporter ion 1 an reporter ion 2218
 // is either less then the lower boundary,219
 // or either more then the upper boundar.220
 // In both cases, the reporter ion intesity is deviating for both samples:221
 if (lLowerBoundary > lExperimentalRatio || lUpperBoundary < lExperimentalRatio) {222
 // A. The Agent inspection resulted in deviating reporter ion intensities as223
 // their ratio was outside one of the boundaries.224
 lDeviatingRatio = true;225
 } else {226
 // B. Else the Agent inspection resulted in non deviating reporter ion intensities as227
 // their ratio was within the lower and upper boundary.228
 lDeviatingRatio = false;229
 }230
 }231

232
 // C. MAKING THE INSPECTION REPORTS AND COMMITTING THE VOTES233
 //**234

235
 // 1. In all cases, store the experimental ratio between the236
 // two reporter ions as a value to display in the information table.237

238
 // A BigDecimal rounds a double at 2 decimals.239
 BigDecimal lRoundedExperimentalRatio = null;240

Fully documented source code for the ReporterIonAgent

 lRoundedExperimentalRatio = new BigDecimal(lExperimentalRatio).setScale(2, BigDecimal.ROUND
_HALF_UP);

241

 lResultForTable = lRoundedExperimentalRatio.toString();242
243

 // 2i. Deviating reporter ion intesity ratio, this Agent suggests to select the peptide hypothesis!244
 if (lDeviatingRatio) {245
 lResultForArff = "1";246
 for (int i = 0; i < lAgentVotes.length; i++) {247
 lAgentVotes[i] = AgentVote.POSITIVE_FOR_SELECTION;248
 }249
 // 2ii. Non Deviating reporter ion intensity ratio, this Agent is neutral to select the peptide hypothesis!250
 } else {251
 lResultForArff = "0";252
 for (int i = 0; i < lAgentVotes.length; i++) {253
 lAgentVotes[i] = AgentVote.NEUTRAL_FOR_SELECTION;254
 }255
 }256

257
 // 3. Creates an Agentreport for this inspection.258
 iReport.addReport(AgentReport.RK_RESULT, lAgentVotes[0]);259
 iReport.addReport(AgentReport.RK_TABLEDATA, lResultForTable);260
 iReport.addReport(AgentReport.RK_ARFF, lResultForArff);261

262
 // 4. Stores the report on the PeptideIdentification object.263
 for (int i = 0; i < lAgentVotes.length; i++) {264
 aPeptideIdentification.addAgentReport((i + 1), this.getUniqueID(), iReport);265
 }266

267
 // 5. Returns the AgentVotes in the end of the inspection.268
 return lAgentVotes;269
 }270

271
 /**272
 * Returns a description for the Agent.273
 * Note that html tags are used to stress properties.274
 * Use in tooltips and configuration settings.275
 * <p/>276
 * Fill in an agent description. Report on purpose and a minor on actual implementation.277
 *278
 * @return String description of the ReporterIonAgent.279
 */280
 public String getDescription() {281
 return "<html>Inspects for the abberant reporter ion intensities." +282
 "Selects when two reporter ions (" + this.iProperties.get(MASS_1) +283
 " , " + this.iProperties.get(MASS_2) + ") have a more then " + this.iProperties.get(RATIO) +284
 " fold intesity ratio.";285
 }286
}287

4.5. USING A CUSTOM AGENT IN PEPTIZER 49

DESCRIPTION

The final method that must be implemented for each Agent is a descriptive method. Here

resides the hard coded description the user reads in the Agent table upon starting a new

Peptizer selection task. In addition, when the user is validating a Peptide hypothesis this

description shows up in the information table.

It is important to stress shortly what it does, but also how an Agent casts a vote.

Algorithm 6 Agent description

/**

* Describe the ReporterIonAgent shortly.

*/

public String getDescription() {

return "<html>Inspects for the abberant reporter ion intensities." +

"Selects when two reporter ions (" + this.iProperties.get(MASS_1) +

" , " + this.iProperties.get(MASS_2) + ") have a more then " +this.iProperties.get(RATIO) +

" fold intensity ratio.";

}

4.5 Using a custom Agent in Peptizer

The custom ReporterIonAgent is ready to be used in Peptizer. Therefore, the ReporterI-

onAgent must be added to the agent configuration file. This includes information on the

classpath and classname as well as the Agent’s parameters (see 3.5 for more information

on the configuration files). This looks as following:

<agent>

<uniqueid>peptizer.agents.custom</uniqueid>

<property name="name">Reporter Ion Agent</property>

<property name="active">true</property>

<property name="veto">false</property>

<property name="reporter_mz_1">114.1</property>

<property name="reporter_mz_2">117.1</property>

<property name="ratio">1.5</property>

<property name="error">0.2</property>

</agent>

4.5. USING A CUSTOM AGENT IN PEPTIZER 50

When a new selection task is started , the ReporterIonAgent is availlable to inspect peptide

hypothesises as illustrated below.

Figure 4.3: After adding the ReporterIon Agent to the agent configuration file, the ReporterIon
Agent can be used for creating a new Peptizer task.

Peptizer will then inspect each MS/MS spectrum for deviating reporter ion intensities

by using the ReporterIon Agent. As such, peptide hypothesises originating from MS/MS

spectra with deviating reporter ion intensities will be selected and shown in the manual

validation GUI of Peptizer. This is shown in the figure below. Note that this list can also

be saved as a comma separated file (see 3.3).

4.5. USING A CUSTOM AGENT IN PEPTIZER 51

Figure 4.4: By using the ReporterIon Agent, Peptizer selected all peptide hypothesises from
MS/MS spectra with deviating reporter ion intensities. Both green boxes show how
the ReporterIon Agent first identifies the reporter ions in the MS/MS spectrum
and used these to calculate the intensity ratio of 3.42. Since this is more then
the threshold ratio that was set to 1.5, this peptide hypothesis was selected for its
deviating reporter ion intesities in the MS/MS spectrum.

4.6. WRITING YOUR OWN AGENTAGGREGATOR 52

4.6 Writing your own AgentAggregator

Finally, when a series of Agents voted on a MS/MS spectrum and it’s peptide hypothe-

sises, these Agent votes are input for an AgentAggregator. The task of an Agen-

tAggregator is then to bundle these votes and produce a conclusion whether or not the a

PeptideIdentification matches a profile defined by its Agents.

The BestHitAggregator serves as an example for creating a custom AgentAggregator. The

construction of a AgentAggregator is very similar to that of an Agent. First, all Agen-

tAggregators must extend the abstract AgentAggregator class so to have a common

set of variables and a common signature. Second, an AgentAggregator must also be

initialized to set its properties from the aggregator.xml configuration file.

Algorithm 7 AgentAggregator construction

public class BestHitAggregator extends AgentAggregator {

public static final String SCORE = "score";

public BestHitAggregator() {

initialize(SCORE);

}

Also like in the Agent, the input/output structure of the AgentAggregator makes sense

upon implementing the abstract match method from the AgentAggregator class.

Again, a PeptideIdentification object serves as an input parameter and a single

AgentAggregatorResult is returned as output. Note that the different aggregation

results are static on the AgentAggregatorResult enum.

A collection of Agents is set upon starting a Peptizer task on the abstract AgentAggrega-

tor class. Therefore, an AgentAggregator implementation has no concern on the type of

Agents, it must only be aware that there are some Agents ready for voting.

First, a number of local variables are declared that are used during the routine. Then, there

is a check if there is any confident peptide hypothesis for this MS/MS spectrum. Only then

starts an iteration over all the availlable Agents. Each Agent then inspects the

PeptideIdentification and returns an AgentVote. As this is the BestHitAggregator,

only the votes for the best peptide hypothesis are taken into consideration

4.6. WRITING YOUR OWN AGENTAGGREGATOR 53

here. During iteration, the veto status of an Agent is also logged, but only if the Agent is

positive for selection.

Algorithm 8 BestHitAggregator matching method

public AgentAggregationResult match(PeptideIdentification aPeptideIdentification) {

boolean boolConfident = false;

boolean boolMatch = false;

boolean boolVetoWasCalled = false;

Integer lThresholdScore = new Integer(iProperties.getProperty(SCORE));

int counter = -1;

AgentVote[] results = new AgentVote[iAgentsCollection.size()];

if (aPeptideIdentification.getNumberOfConfidentPeptideHits() > 0) {

boolConfident = true;

for (Agent lAgent : iAgentsCollection) {

counter++;

results[counter] = lAgent.inspect(aPeptideIdentification)[0];

if (results[counter] == AgentVote.POSITIVE_FOR_SELECTION && lAgent.hasVeto()) {

boolVetoWasCalled = true;

}

}

if (boolVetoWasCalled) {

boolMatch = true;

} else {

int lSumScore = sumVotes(results);

if (lSumScore >= lThresholdScore) {

boolMatch = true;

}

}

}

if (boolConfident) {

if (boolMatch) {

return AgentAggregationResult.MATCH;

} else {

return AgentAggregationResult.NON_MATCH;

}

} else {

return AgentAggregationResult.NON_CONFIDENT;

}

}

4.6. WRITING YOUR OWN AGENTAGGREGATOR 54

When the iteration has finished, a few lines of logic aggregate the votes. First, if an

Agent with veto rights was positive for selection then it is a match for sure. Second, all

votes are summed and compared with the scoring threshold as given by the user. If the

sum is greater then the threshold, then it is a match. Else, a PeptideIdentification is not

matched or not confident. The AgentAggregator concludes by returning a corresponding

AgentAggregatorResult object.

In the end, the BestHitAggregator will thus have returned a conclusion on a given PeptideI-

dentification. Those PeptideIdentifications with a AgentAggregatorResult.MATCH

result are subsequently presented in the manual validation interface of Peptizer.

	Table of contents
	Abbreviations
	Introduction
	Installing Peptizer
	Downloading Java
	Downloading the Peptizer files

	Using Peptizer
	Starting a Peptizer task
	Selection task
	ARFF task

	Handling a Peptizer task
	Overview
	Identification tree
	MS/MS spectrum identification tab
	Status pane

	Saving the results
	Distributing Peptizer objects
	Understanding the configuration files
	Using Peptizer from the command line

	Extending Peptizer
	Introduction
	Overview
	Writing the first Agent
	A more advanced Agent
	Background
	Creating a custom Agent to inspect expectations

	Using a custom Agent in Peptizer
	Writing your own AgentAggregator

